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Designable ultra-smooth ultra-thin solid-electrolyte
interphases of three alkali metal anodes
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Chun-Hai Fan 3, Wei-Qiang Hu1, Zhao-Bin Chen1, Yuan Fang1, Qing-Hong Zhang1, Quan-Feng Dong1 &

Bing-Wei Mao1

Dendrite growth of alkali metal anodes limited their lifetime for charge/discharge cycling.

Here, we report near-perfect anodes of lithium, sodium, and potassium metals achieved by

electrochemical polishing, which removes microscopic defects and creates ultra-smooth

ultra-thin solid-electrolyte interphase layers at metal surfaces for providing a homogeneous

environment. Precise characterizations by AFM force probing with corroborative in-depth

XPS profile analysis reveal that the ultra-smooth ultra-thin solid-electrolyte interphase can be

designed to have alternating inorganic-rich and organic-rich/mixed multi-layered structure,

which offers mechanical property of coupled rigidity and elasticity. The polished metal anodes

exhibit significantly enhanced cycling stability, specifically the lithium anodes can cycle

for over 200 times at a real current density of 2 mA cm–2 with 100% depth of discharge. Our

work illustrates that an ultra-smooth ultra-thin solid-electrolyte interphase may be robust

enough to suppress dendrite growth and thus serve as an initial layer for further improved

protection of alkali metal anodes.

DOI: 10.1038/s41467-018-03466-8 OPEN

1 State Key Laboratory of Physical Chemistry of Solid Surfaces and Department of Chemistry, iChEM, College of Chemistry and Chemical Engineering, Xiamen
University, Xiamen 361005, China. 2 Department of Materials Chemistry, College of Chemical Engineering and Materials Science, Quanzhou Normal
University, Quanzhou 362000, China. 3 Division of Physical Biology & Bioimaging Center, Shanghai Synchrotron Radiation Facility, CAS Key Laboratory of
Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China. Correspondence and
requests for materials should be addressed to Q.-F.D. (email: qfdong@xmu.edu.cn) or to B.-W.M. (email: bwmao@xmu.edu.cn)

NATURE COMMUNICATIONS |  (2018) 9:1339 | DOI: 10.1038/s41467-018-03466-8 |www.nature.com/naturecommunications 1

12
34

56
78

9
0
()
:,;

http://orcid.org/0000-0001-9302-4631
http://orcid.org/0000-0001-9302-4631
http://orcid.org/0000-0001-9302-4631
http://orcid.org/0000-0001-9302-4631
http://orcid.org/0000-0001-9302-4631
http://orcid.org/0000-0002-7171-7338
http://orcid.org/0000-0002-7171-7338
http://orcid.org/0000-0002-7171-7338
http://orcid.org/0000-0002-7171-7338
http://orcid.org/0000-0002-7171-7338
mailto:qfdong@xmu.edu.cn
mailto:bwmao@xmu.edu.cn
www.nature.com/naturecommunications
www.nature.com/naturecommunications


Lithium anode has received considerable attention, as it is
regarded as the most promising anode candidate for the next
generation high-energy-density rechargeable batteries such

as Li–sulfur and Li–air batteries1–6. Recently, sodium and
potassium anodes are also gaining popularity because of their
abundance and more attractive cathode chemistry in Na–air7 and
K–air8 batteries. However, anodes made of these alkali metals,
also denoted as MA, suffer from intrinsic and induced dendrite
growth upon charge–discharge cycling, resulting in low Cou-
lombic efficiency, short-circuiting and thus short lifetime of
batteries9–13. Continuous efforts have been devoted to improve
the long-term stability of Li anodes, ranging from traditional
soaking-based method that passively forms a solid-electrolyte
interphase (SEI)14–19, strategies to improve Li deposition/dis-
solution behaviors including preferential adsorption20, employ-
ment of ultrahigh Li salt concentration21 and asymmetric cycling
protocols22, to currently overwhelming artificial approaches23–28

that form micrometer scale artificial SEI layers by heavy reactions
with Li surface or application of physical isolating layers. How-
ever, up to date, the long-term stability of Li anodes, especially
under high-current density and with reasonable depth of dis-
charge (DOD), is still far from satisfactory (see Supplementary
Table 1). Most of the works have to employ Li foils as anode
material because of low utilization of Li source, or only limited
cycle numbers can be maintained in the case of anode-free type
cells. The situation is even less optimistic for Na and K
anodes29,30 (see Supplementary Table 2).

Looking into the origins of dendrite growth, the microscopic
protrusions, non-uniform electric field distribution, as well as
uneven supply of metal ion flux are detriment factors that pro-
mote dendrite growth2,3. These factors are inherently correlated
with the roughness of surface as well as inhomogeneity of SEI that
is inevitably formed on the MA surfaces as a result of chemical
and/or electrochemical reductions of electrolyte14,31–33. The
rough surface morphology boosts the intrinsic growth of long
dendrites at Li anode, while inhomogeneous and unstable SEI
induces dendrite growth at all of the three metal alkali anodes,

especially Na and K anodes because of their more reactive
chemistry than Li (Fig. 1a). However, it is important to emphasize
that SEI is a double-edged sword depending on its physical and
chemical properties: A coarse and inhomogeneous SEI, such as
the disordered mosaic type of SEI prepared by soaking-based
method34, promotes preferential growth through the cracks of
mosaic SEI or at the locations where SEI is thinner or broken;
while a fine and smooth SEI where the localized defects are largely
eliminated would suppress both intrinsic and induced dendrite
growth of all the three MA anodes.

Ideally, SEI layers for alkali metal anodes must be chemically
stable and metal ion-conductive for batteries to operate; they
should also be compact in general and uniform laterally to avoid
localized effects for dendrite growth; last but not least, they
should have well-defined structure both in lateral and vertical
directions with mechanical property of coupled rigidity and
elasticity to accommodate the volume change upon cycling2,35. Of
particular attention is that the achievement of such ideal SEIs
relies strongly on the smoothness of the metal surface19,36. Thus,
creation of atomically smooth surface, onto which a near-ideal
SEI can be formed, is an ultimate goal that would lead to a near-
perfect metal alkali anode. This has been pursued for long time,
but is so challenging that has not been achieved by currently
available approaches. However, it is well-known that electrolytes
can be reduced to various oxidation states37,38 depending on
potential and MA

+ concentration. Hence, the fundamental sur-
face electrochemistry could play important and unique roles that
other approaches cannot provide in terms of facile control of
electrode kinetics.

Here, we report a general non-conventional electrochemical
approach to create near-perfect Li, Na, and K metal anodes, based
on electrochemical polishing of the alkali metal surfaces down to
atomic-flatness as well as manipulation of electrolyte reduction
processes to construct ultra-smooth ultra-thin (USUT) SEI
with designable structure. By combined extensive characteriza-
tions by chemically, structurally as well as mechanically sensitive
techniques, we reveal that the SEIs on MA anodes can be facilely
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Fig. 1 Schematic diagrams of dendrites growth on different MA surfaces and electrochemical stripping-plating strategy for polishing MA surface. a
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tuned to have alternating inorganic-rich (I) and organic-rich/
mixed (O) multi-layer structures in appropriate electrolytes.
These types of multi-layer SEI structures are on contrary to the
traditional mosaic model of SEI, and bear mechanical property of
coupled rigidity and elasticity. With these features and merits, a
significant step forward has been achieved for all the three alkali
metal anodes in cycling stability under high-current density with
high DOD.

Results
Electrochemical polishing for alkali metal surfaces. Basically,
our electrochemical approach is based on the electrochemical
stripping-plating (ESP) strategy as shown in Fig. 1b, including a
potentiostatic stripping, during which concurrent MA dissolution
and electrolyte reduction takes place, and a follow-up galvano-
static plating, during which concurrent MA deposition and fur-
ther reduction of the electrolyte occurs. The potential for
stripping is sufficiently anodic for high-rate MA dissolution (up to
~200 mA cm–2 in the initial stage), yet within the potential win-
dow for electrolyte reduction. An exceedingly high MA

+ surface
concentration (~11 mol L–1) is created during stripping (see
Supplementary Fig. 1, Supplementary Notes 1 and 2 and Sup-
plementary Table 3), which forms a viscous MA

+ liquid layer that
is crucial to achieving a smooth metal surface and meanwhile
promoting electrolyte reduction and formation of a primary
MA

+-rich SEI. The cathodic current density for plating is kept
low, which allows MA to deposit back slowly to smooth out the
surface and SEI formation to complete at the same time.

As revealed by atomic force microscopy (AFM) images, large-
scale close to atomic-flatness surfaces were created for the three
alkali metals after application of the ESP processes. The flat
terraces can reach a size of as large as ~30 μm wide with roughness
of only ~1.5 nm, approaching the quality of single crystalline

surfaces (Fig. 2b–h), in contrast to the rough pristine surfaces with
height variation of ~1 μm (Fig. 2a and Supplementary Fig. 2a, b).
Remarkably, the SEI films of the three alkali metals are also ultra-
smooth with molecular-scale roughness of e.g., ~0.6 nm within an
area of 5 × 5 μm2 on the metal surface (Fig. 1d, f, h). The large-
scale flat surfaces can also be obtained on Li and Na thin films
introduced onto modified Cu substrates (Supplementary Fig. 3),
which facilitates easy characterizations and enables battery
performance tests with reasonable DOD.

Tunable structure and mechanical property of SEI. To probe
the vertical structure and mechanical property39–41 of the ultra-
smooth SEIs, AFM force curve measurements were performed,
mainly on Li anodes. For convenience of discussion, we begin
with inspection of the force-piezo displacement curve recorded
for soaked Li surface (Fig. 3a and Supplementary Fig. 5a, d). It
can be seen intuitively that the cantilever deflects steeply until the
tip reaches the Li substrate so that only a dip is seen. This implies
the SEI on the soaked sample is rather stiff and lacks of flexibility
against tip pressing so that cracking occurs upon force accumu-
lation, as discerned by the fragmentation of surface after the
measurements (Fig. 3b and Supplementary Fig. 6a, d).

However, the situation is totally different for the polished
surfaces. A single potential step into the potential region
preferential for reduction of 1,3-dioxolane (DOL) in the stripping
process can create an SEI with coupled rigidity and elasticity. This
can be viewed with linear deflection of cantilever followed by
levering off until reaching the Li substrate (Fig. 3d and
Supplementary Fig. 5b, d). This behavior is just like an elastic-
plastic deformation process and suggests a soft inner layer and a
stiff outer layer, i.e., soft-stiff SEI structure, which is robust
against pressing as discerned by the smooth surface after force
curve measurements (Fig. 3e and Supplementary Fig. 6b, e). By
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Fig. 2 AFM characterization of morphology of polished MA surfaces. a–d AFM images of Li surface before (a) and after stripping (b) and plating (c, d) in
the electrolyte of 1 M LiTFSI/DME-DOL. e, f AFM images of Na surface after polishing in the electrolyte of 1 M NaOTf/diglyme. g, h AFM images of K
surface after polishing in the electrolyte of 1 M KTFSI/DME. Color bars are 0–1 μm (a), 0–300 nm (b, c), 0–1.5 nm (d), 0–150 nm (e), 0–200 nm (g), and
0–1.5 nm (f, h)
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applying multiple potential steps sequentially to the regions for
bis(trifluoromethanesulfonyl)imide (TFSI) reduction at lower
potential and for DOL reduction at higher potential and then
back to the region for reduction of TFSI, two types of force curves
are observed for such an SEI, either with two elastic-plastic
deformation-like processes (Supplementary Fig. 5c, d) or an
elastic-plastic deformation-like process in the outer region
followed by an elastic-cracking process in the inner region
(Fig. 3g, h and Supplementary Fig. 5c, d). Both situation
indicating the presence of an additional stiff inner layer, i.e., an
alternating stiff-soft-stiff multi-layered SEI has been formed.

To understand the origin of the different mechanical behaviors
of the three types of SEIs, depth-dependent characterization of
chemical composition was performed by X-ray photoelectron
spectroscopy (XPS) profile analysis. For soaked sample (Fig. 4a, b
and Supplementary Fig. 8a), inorganic species of LiF, LiNSO2CF3,
and Li3N are the major components in the inner region, while
LiCF3, LiNSO2CF3, and Li2S2O4 in the surface region. Only very
little organic moieties exist, mostly from high-oxidation state

reduction products such as CH3OCH2CH2OLi as the C 1s signal
is weak, broad and random, largely from the aliphatic C; this is
further corroborated by the broad signals of amorphous organic
salts of Li observed by X-ray absorption near-edge structure
(XANES)42 (Supplementary Fig. 10). There is a cut of signals on
the spectra between etching time of 30 and 60 s, dividing the SEI
film into two inorganic-rich layers, which is denoted as an I–I
structure or all-inorganic structure (Supplementary Fig. 9a).
Interestingly, such I–I type of SEI structure is in contrast to the
traditional I–O double layer model of SEI34,43, a picture that has
been widely adopted for SEI for a long time.

Next, the soft-stiff SEI formed after ESP process with a single
potential step for stripping displays a dramatically different
chemical structure. No passive layer is present as no signals from
Li2O and carbonyl species (CO3

2−) are observed by XPS and
XANES (Supplementary Figs. 8b and 10) and no signal from
hydroxyl (–OH) by Fourier transform infrared spectroscopy
(FTIR) (Supplementary Fig. 11). This leaves with a fresh Li
surface for SEI formation. Remarkably, however, in the inner
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region (sputtering time between 30 and 150 s),
the signal of C–O moieties clearly indicates the presence
of an ordered low oxidation state polymeric ROLi that is rich
of C–O–C, C–C–O, O–C–O, in contrast to the almost absence of
such moieties in the I–I structured SEI of soaked sample. In the
surface region, however, the high-oxidation state ROLi is present
judged from the appearance of aliphatic C signal; meanwhile,
inorganic LiCF3 and LiF become dominant with small amount of
Li2NSO2CF3 and Li2S2O4 and Li2SO3 (Fig. 4c, d and Supplemen-
tary Fig. 8b). These results suggest an SEI structure with an
organic-rich inner layer of ca. 10 nm thick, and an inorganic-rich
outer layer of ca. 2 nm thick, estimated from the calibrated
sputtering rate of 4 nm per min in Si, and we thus denote the soft-
stiff SEI as O–I structured SEI (Supplementary Fig. 9b).

Finally, the stiff-soft-stiff SEI created with multiple potential
step for stripping in the ESP process leads to an I–O–I structured
SEI, in which an organic-mixed middle layer is sandwiched by two
inorganic-rich layers in the inner and outer regions, respectively
(Supplementary Fig. 9c), with total SEI thickness of ca. 26 nm.
Note that each layer of the I–O–I structured SEI contains
components and structure that have subtle differences from those
of O–I structured SEI (Fig. 4e, f): The I-rich inner layer contains
Li–C moiety as a result of exposure of freshly generated Li surface
upon Li dissolution; the O-mixed middle layer contains C–O–C
moiety with negligible aliphatic C signal; and the outmost region
of the I-rich outer layer is rich of LiNSO2CF3 while the LiF
components are buried underneath. Noteworthy is that the S-
based signals also indicate the presence of substantial amount of
Li2S throughout the thickness of the SEI (Supplementary Fig. 8c).

Thus, the chemical composition and structure of the three SEIs
revealed by XPS profile analysis and the mechanical properties

probed by AFM force curve measurements are corroborative of
each other: The all-inorganic SEI is stiff, while the O–I and I–O–I
structured SEI have coupled elasticity (soft) and rigidity (stiff). In
particular, the combination of two chemically different O–I layers
behave mechanically like a cushion layer that can resist against
dendrite growth. The apparent Young’s moduli are 7.2 ± 0.7 GPa
for the O–I SEI and 3.5 ± 0.9 GPa for the combined O–I part of
the I–O–I SEI. These values are smaller than that of the all–I SEI
(10.9 ± 5.7 GPa), but are within the scope for rigid inorganic
materials41,44,45 (Fig. 3c, f, i and Supplementary Note 3).
Statistical analysis on thickness reveal total thickness of 22 ±
10 , 11 ± 2 , and 21 ± 3 nm for the all–I SEI, O–I SEI and I–O–I
SEI, respectively, after correction of Li deformation (Supplemen-
tary Note 4 and Supplementary Fig. 5e). These values are on the
smaller side given the reason that the organic-rich layer is
deformed elastically and not penetrated upon pressing. The
coupled elasticity and rigidity presented by the ultra-thin ultra-
smooth I–O–I SEI are similar to the favorable mechanical
property possessed by much thicker polymeric artificial SEIs that
have been demonstrated to accommodate the interfacial fluctua-
tion during the Li plating/stripping processes46–48.

MA
+-rich SEI for enhanced conductivity. The exceedingly high

MA
+ surface concentration generated upon stripping of MA surface

favors the reduction of TFSI or trifluoromethanesulfonate (OTf)
anion to low oxidation states; in the case of Li electrode, it also
provides the possibility for DOL to reduce and form Li-
incorporated oligomer of (ROLi)n, rather than only the Li-ending
ROLi chain, where R denotes for polymeric (CH3CH2OCH2O–)n or
(CH3OCH2CH2O–)n moiety. Thus, it is feasible to create MA-rich
SEIs in all cases, and a network-like framework incorporated with
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the polymeric (CH3CH2OCH2O–)n or (CH3OCH2CH2O–)n moiety
in the case of Li electrode. In the following, we focus on Li electrode
for further discussion on the SEI structure.

FTIR measurements disclose differences among the three types
of SEIs (Fig. 4g and Supplementary Table 4), which supports the
Li+-rich network-like structure of the O–I and I–O–I SEIs. First,
the signal of band at 575 cm–1, attributed to the rocking mode of
vibration of Li–O, increases in a sequence of I–O–I SEI > O–I
SEI > all–I SEI, implying the amount of Li+ in the same sequence.
Second, the overwhelmingly strong bands at ~625 cm–1, largely
contributed by various stretching modes of the LiF clusters49,
reveal that all the three types of SEIs contain substantial amount
of LiF clusters. Furthermore, the broad background-like feature in
the region of 1000–1400 cm–1 from C-based bands of organic
components (e.g. C–C, C–O, and C–H) observed on O–I and
I–O–I structured SEIs is an indication of presence of a cross-
linked structure in these SEIs. These features suggest that Li+-rich
oligmeric (ROLi)n moieties, more preferential than the Li-ending
chain-like ROLi moiety, are formed in the I–O–I and O–I SEI
(see Supplementary Note 5 and Supplementary Fig. 13). Hence, a
network structure composed of oligmeric (ROLi)n incorporated

with small inorganic molecules and clusters such as LiF and Li2S
is proposed (see Supplementary Note 6), in which the rich
amount of Li sites in the network is expected to provide channels
that facilitate Li ion conduction. A conclusion can be reached
based on the above analysis that the O–I and I–O–I types of SEI
structures are not only on contrary to the I–I structure of the SEI
of the soaked sample and disordered mosaic type of model for
SEI, but also expected to exhibit fast transport of Li+ ions.

Indeed, the electrochemical impedance spectroscopy (EIS)
measurements (Fig. 4h and Supplementary Table 5) show that the
O–I and I–O–I types of SEIs have considerably smaller SEI
resistance (21 and 28Ω) as well as charge transfer resistance (23
and 30Ω), compared with those of soaked sample (87 and 50Ω),
respectively. This illustrates that not only the Li+ transport
through the thin SEI layer, but also the electron transfer across
the Li–SEI interface, are significantly enhanced in the SEIs
formed on the fresh and flat Li surfaces. Furthermore, given the
thickness of 12 and 26 nm, conductivity of 3 × 10–8 and 5 × 10–8

S cm–1 are estimated for the O–I and I–O–I SEIs, respectively,
which are of about ten times enhancement compared to those
reported for SEI50.
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Enhanced electrochemical performance of polished Li anodes.
The Li-rich USUT SEI with the O–I and I–O–I multi-layered
structures on flat Li surface bear all features for an ideal SEI. Of
particular significance is the coupled rigidity and elasticity of these
SEIs, which is a highly desirable mechanical property for stabilizing
Li anodes (Fig. 5 and Supplementary Figs. 14–18). With these
features and merits, Li thin-film anodes with the I–O–I SEIs can
run over 500 and 300 stable cycles with 10% DOD (Fig. 5e) and
50% DOD (Supplementary Fig. 16c), respectively, at 10mA cm–2.
To separately evaluate the capability of the as-prepared I–O–I SEI
for working on a foreign substrate, asymmetric Cu||Li cells were
employed (see Methods section). As shown in Fig. 5g, the Cu||Li cell
can run for over 200 cycles with 100% DOD under current density
of 2mA cm–2 and areal capacity of 1mAh cm–2 with an average
Coulombic efficiency of ~99% in an electrolyte with ordinary
concentration of Li salt (1M LiTFSI/DME-DOL) and without
additives, approaching the performance achieved by employing
high Li salt concentration and cycling protocol51.

Optimizing the ESP process can further enhance the perfor-
mance of MA anodes for specific purposes. To accommodate Li–S
batteries, additional 2 wt.% LiNO3 was added to the electrolyte of 1
M LiTFSI dissolved in 1,2-dimethoxyethane (DME) and DOL for
polishing Li electrodes. The I–O–I SEI thus prepared significantly
enhances the capability to withstand the reaction of Li surface with
sulfur so that at least 450 cycles was maintained in the absence of
LiNO3 with Li DOD of as high as 30% (see Methods section for the
detailed DOD calculation) and Coulombic efficiency of nearly 100%
(Supplementary Fig. 19). To further probe the potential application
of the SEIs prepared in DOL-based electrolyte in Li metal batteries
involving carbonate-based electrolyte, Li||LiCoO2 full cells in the
electrolyte of 1M LiPF6 in EC-DMC-EMC (V/V/V, 1/1/1) were
constructed. The full cell using Li anode coated with I–O–I

structured SEI exhibits a promising reversibility with Columbic
efficiency of 99.7% and capacity retention of 83% after 200 cycles
(Supplementary Fig. 20).

The above results demonstrate that despite of the large Young’s
modulus of the SEI, the coarse all-inorganic structured SEI
promotes dendrite growth; on contrary, the USUT multi-layered
SEI with coupled rigidity and elasticity, even in the free-standing
like state on Cu substrate, can suppress dendrite growth for long-
term stability of Li anodes.

Enhanced stability of polished Na and K anodes. Na and K
anodes created by ESP processes have all-inorganic type of SEI
structure, which has been confirmed by the results of XPS, FTIR,
and AFM (Supplementary Figs. 21–23), due to the reason that the
currently adopted electrolytes compatible with Na and K anodes,
NaOTf/diglyme and KTFSI/DME, respectively, do not contain DOL
that would otherwise be an essence for creating organic-rich moi-
eties. Nevertheless, compared with the all-inorganic SEI on the
soaked Li anode, these SEIs are thinner, ca. 15 and 7 nm with
apparent Young’s moduli of ca. 1.3 and 14.2 GPa for Na and K
anodes, respectively. Importantly, however, since the primary pro-
blems for Na and K anodes arise from the poor quality of SEIs
which then induces dendrite growth and causes excessive electrolyte
consumption, the compact and stable Na+-rich and K+-rich SEIs on
smooth Na and K surfaces may be adequate to circumvent the
problems. Hitherto unreported cycling stability was achieved for Na
anodes with 100% DOD for the Cu||Na cell, which can run for at
least 550 cycles with Columbic efficiency close to 100% (Fig. 6d, e).
Optical images show that the surface of polished Na remains
metallic luster and relatively flat after 400 cycles (Fig. 6f). As for K
anodes, symmetric cells were assembled with two polished K foil
electrodes. A preliminary try of the ESP process leads to enhanced
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stability of at least 200 cycles (0.1mA cm–2 with 0.02mAh cm–2 in
1M KTFSI/DME) (Supplementary Fig. 24).

Discussion
In conclusion, we have established a simple, but more than simple,
ESP-based electrochemical approach to create near-perfect MA anode
with near-ideal SEIs of the three alkali metal anodes. The metho-
dology for lateral as well as vertical characterization of structure and
property of the USUT SEI by AFM-based imaging and force spec-
troscopy and XPS depth profile analysis provide corroborative evi-
dence that elucidate novel well-defined O–I and I–O–I types of
multi-layered SEI structure. Such Li anodes have exhibited sig-
nificantly enhanced cycling stability under high-current density with
high DOD, and allow Li–S battery to operate in the absence of LiNO3

additive under high DOD. Also, such Li anodes with SEIs prepared
in DOL-based electrolyte could be extended to match LiCoO2

cathodes in carbonate-based electrolytes. The prolonged cycling sta-
bility of Na anode with 100% DOD provides solid foundation for its
practical applications. Our work illustrates that an ultra-smooth and
ultra-thin SEI of near-perfect alkali metal anodes may be robust
enough to protect the MA anodes for superior long-term cycling
stability. The near-perfect alkali metal surfaces also provide tre-
mendous opportunities in diverse fields including surface science,
nanotechnology, and materials and energy sciences and technologies.

Methods
Electrochemical polishing and SEI formation of MA metal foil surface. The
electrochemical polishing of MA anodes, employing a stripping-plating strategy,
was conducted in a two-electrode cell that employed a larger alkali metal foil as the
counter electrode before half cells or full cells were assembled. To facilitate
simultaneous creation of flat MA surface and formation of smooth SEI, a potential
which is sufficiently anodic of MA equilibrium potential yet within the potential
window for electrolyte reduction was applied in the stripping step, during which
MA dissolution and electrolyte reduction occurred concurrently. For Li anode, the
potential range for stripping was chosen to be between 0.6 and 1.4 V in DOL-
DME-LiTFSI electrolyte (Supplementary Fig. 1) and lasted for a period of 90 – 150
s to obtain a flat Li surface, which meanwhile supplies high concentration of Li+

near the surface to facilitate the initial stage of SEI formation. Multiple potential
steps were applied between 0.6 and 1.0 V (vs. Li/Li+) to create multi-layered SEI. A
galvanostatic cathodic polarization at low-current density is immediately followed
as the plating step for a prolonged time, during which Li deposition and electrolyte
reduction take place, which further smoothens the Li surface and completes the SEI
formation. For Na and K anodes the stripping potentials were 0.8 V (vs. Na/Na+)
and 0.2 V (vs. K/K+), respectively, which was followed by the plating step.

Electrochemical polishing of Li and Na thin-film electrodes. To test the elec-
trochemical performance of Li and Na anodes with practical concern, thin film
electrodes were prepared by a modified lithophilic or sodiophilic approach initially
reported by the group of Yi Cui52. The procedure is described as follows: Cu foils
(Ф13.0 × 0.024mm, ≥99.7%, Power long) were washed by immersing in 0.1M
sodium oxalate for 5 min, followed by successive rinsing with deionized water, acetone
and ethanol. After drying, the Cu foils were transferred to a thin film deposition
platform (Explorer-14, Denton Vacuum) and sputtered with 50 nm Au to form
lithophilic or sodiophilic Cu@Au foils. The Cu@Au foils were then transferred to Ar-
filled glove box for Li or Na infiltration by dipping in a Li or Na melt obtained by
heating a piece of metallic Li to over 250 °C or metallic Na to over 150 °C, until the
melt was entirely entrapped. After cooling down to room temperature, Li or Na thin-
film electrodes were obtained. The amount of the Li or Na melt was quantified
depending on purposes. The Li or Na thin-film electrodes were subject to electro-
chemical polishing, following the same procedure for Li or Na foils, to obtain flat
metal surfaces and to achieve desirable SEIs. To obtain free-standing like SEIs on
modified Cu substrates for constructing anode-free type of Cu||Li and Cu||Na cells,
respectively, the residual Li or Na on the corresponding thin film electrodes after
electrochemical polishing were removed by electrochemical dissolution.

Measurements of electrochemical behaviors of alkali electrodes. Galvanostatic
cycling and cathodic polarization behaviors were examined on LANHE CT2001A
battery testing system (LAND Electronics) or VMP-300 multi Potentiostat (Bio-
Logic Science). Both metal foil electrodes and metal thin-film electrodes were
employed for evaluation of charge–discharge cycling behavior as well as the
behavior against prolonged unidirectional galvanostatic polarization. For Li metal
electrodes, Li foils were assembled into symmetric coin cells (CR2025-type) with
soaked Celgard-2400 separator and 1M LiTFSI/DME-DOL (1/1, V/V) electrolyte,
or otherwise indicated. For galvanostatic cycling using Li thin-film electrodes at

fixed DOD, typical 10 ± 10% mg of Li was entrapped onto Cu@Au foil (1.3 cm2),
which can provide a total capacity of 38.6 mAh, based on the consideration of
theoretical specific capacity of 3860 mAh g–1 for metallic Li. Cycling at a current
density of 10 mA cm–2 (3 mAh cm–2) results in an charge–discharge capacity of 3
mAh cm–2 × 1.3 cm2= 3.9 mAh, which is equivalent of 10% DOD. Cycling tests
with Cu||Li cells were carried out by first depositing 1 mAh of Li onto the Cu@Au
surface with free-standing SEI, followed by Li stripping up to 1.0 V vs. Li/Li+. For
Na and K anodes, the configurations of coin cells were almost the same as Li
anodes except the glass fiber separator. The electrolyte for Na-based cells and K-
based cells are 1 M NaOTf in diglyme and 1M KTFSI in DME, respectively.

Measurements of performances of Li–S batteries. Galvanostatic
charge–discharge cycling was performed on LANHE CT2001A battery testing
system. Li thin-film electrodes prepared by the lithophilic approach were used as
the anodes for Li–S coin cells (CR2016-type). The amount of the metallic Li for
entrapping was based on the actual loading of active materials for cathodes. For an
example, the weight of Li was calculated according to the stoichiometric ratio of Li
and S of the reaction 2Li+ S → Li2S. The actual DOD for Li thin-film electrodes
was 30%. The metal–organic-framework/sulfur composite5 was employed as
cathode material. The composite contains a three-dimensional porous cobalt and
nitrogen-doped graphitic carbon with 70 wt% sulfur loading (S@Co–N-GC). The
cathode was prepared by mixing Co–N-GC/S composite powder, acetylene black,
water-soluble polymer n-lauryl acrylate (LA) with a weight ratio of 7:2:1 onto Al
foils and then dried at 60 °C under vacuum overnight. The electrolyte for battery
testing was 1 M LiTFSI/DME-DOL (1/1, V/V), without any additives including
LiNO3. Cycling was performed in the voltage range of 1.7−2.7 V. The geometric
areas of all electrodes were 1.3 cm2 (13 mm in diameters) and the areal mass
loading on the electrode was about 1.5 mg cm–2.

Measurements of performances of Li||LiCoO2 batteries. To test the potential
application of polished Li anodes, having SEI prepared in the DOL-based elec-
trolyte, in full cells in carbonate-based electrolytes, LiCoO2 (Power long) was used
as a cathode material. The LiCoO2 cathode was prepared by mixing the active
material LiCoO2, super carbon, and LA at a weight ratio of 8:1:1 in deionized water
and ethanol to form a slurry. The slurry was pasted on Al foil and dried at 60 °C
under vacuum overnight. The electrolyte for battery testing was 1M LiPF6/EC-
DMC-EMC (1/1/1, V/V/V). The electrode were 1.3 cm2 (13 mm in diameters) with
LiCoO2 loading mass of approximately 6 mg cm−2, corresponding to the areal
capacity of 1 mAh cm−2. Cells were cycled at 0.5 C (calculated based on the
LiCoO2 cathode) in the potential range of 2.5–4.3 V.

Data availability. The data that support the plots within this paper and other finding
of this study are available from the corresponding author upon reasonable request.
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